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We present an ensemble Monte Carlo growth method 
to sample the equilibrium thermodynamic properties of 
random chains. The method combines two elegant 
techniques: the ensemble (breath-first) growth and the 
Wang-Landau sampling, for computing the density of 
states of a polymer chain in the energy space. The 
density of states is the central quantity for computing 
all the microcanonical and canonical thermodynamic 
quantities, including the free energy, entropy, and 
thermal averages. The algorithm was validated against 
exact enumeration and numerical results for several 
well-studied cases, and employed to confined 
polymers. One of the notable benefits of the new 
algorithm is that it can be easily parallelized across 
multiple nodes, relaxing the memory constraints 
imposed by other breath-first algorithms.

A) Density of states, g(E), for a N = 28-mer interacting
self-avoiding walk (ISAW) chain on a 3D cubic lattice, and
N = 21-mer ISAW on a 2D square lattice. Solid black lines
are exact values from enumeration.
B) Density of states of a 40-mer ISAW confined in a
spherical cavity of radius R (in the unit of lattice spacing).
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the weights do not need to be rounded to an integer number.
H∗

n (E ) is generally not flat because g∗
n(E ) = 1 and γ ∗

n = 1 are
not correct. However, we can use H∗

n (E ) to determine both
gn(E ) and γn by observing that the true replication weight
should be

wn = gn−1(Ep)
gn(E )

γn = w∗
n
γn

gn
. (7)

It means that if a daughter configuration X with energy E
is present in the sample µ∗(X ) times after being replicated
with a factor w∗

n , then it should have been present µ(X ) =
µ∗(X )γn/gn(E ) times instead. Hence Eq. (4) states that the
true histogram is Hn(E ) = H∗

n (E )γn/gn(E ), which we know
is flat: Hn(E ) = M0

∏n
i=1 γi. For a sufficiently representative

sample, the support σn of H∗
n (E ) is the support of gn(E ), and

γn = σn−1/σn. Consequently, the true density of states and the
factor γn can be determined in a single step,

gn(E ) = H∗
n (E )

M0
∏n−1

i=1 γi
, γn = σn−1

σn
. (8)

We summarize the whole procedure:
(1) Start with a sample of M0 copies of a single monomer

with energy E = 0, and set the density of states to g0(E ) =
δ(E ). Then, for each n = 1, . . . , N , repeat the following steps:

(2) Set gn(E ) = 1 for all E , and γn = 1. Grow all daughter
configurations, and evaluate the energy E of each daughter.

(3) Compute the energy histogram Hn(E ), by counting
each daughter with the weights in Eq. (5). Compute also the
support σn of Hn(E ). (For discrete histogram distributions, σn
is the number of nonzero energy bins times the size of a bin.)

(4) Set gn(E ) = Hn(E )/(M0
∏n−1

i=1 γi ) and γn = σn−1/σn,
and apply the replication process with Eq. (5) explicitly. This
time, the resulting energy histogram is guaranteed to be flat,
and the sample size is close to M0 (on average, over several
samples). At this point all daughters become the new parents
for the next growth step.

Since g(E ) becomes large for large values of N , it is con-
venient to work with ln[g(E )], i.e., the entropy. The rescaling
at step (4) reads ln(gn) → ln(Hn) − ln(Hn−1), and the weights
in Eq. (5) are computed by wn = γn exp[ln(gn−1) − ln(gn)].

The main advantage of this algorithm is that it produces
the correct density of states gn(E ) at each n, and when M0
is sufficiently large it does not require additional iterations or
corrections.

Examples. We validate our algorithm by simulating an
interacting self-avoiding walk (ISAW) on a lattice, where the
interaction energy is proportional to the number of nearest-
neighbor contacts, and compare our results with known exact
enumeration values, available for N = 21 on a square lattice
[16] and N = 28 on a cubic lattice [17]. All curves have been
obtained after averaging over 10 runs, with a sample size of
M0 = 105 each. As explained above, sample size fluctuations
are expected: Ref. [13] shows that the best estimate of a quan-
tity O is the weighted average O =

∑
S M (S)ŌS/

∑
S M (S),

where ŌS is the mean value of O over all M (S) configurations
in the sample S, and the sum is over all different samples. We
also computed the specific heat CV , directly from g(E ) by us-
ing a shifted reweighting technique [18,19] [see Supplemental
Material (SM) [20] for details]. The statistical averages for
g(E ) and CV are very stable, with small error bars (see Fig. 1).
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FIG. 1. Density of states (top) and specific heat (bottom) for
ISAW chains with N = 21 on a square lattice, and N = 28 on a cubic
lattice. Markers represent our simulations, while dots (connected by
solid lines, for eye guidance) are from exact enumeration. The error
bars (reported) are smaller than marker sizes. The agreement between
the simulation and the exact values is remarkable.

Moreover, the statistical uncertainty due to correlated chains
in an ensemble growth algorithm is inversely proportional to
the sample size M0 and the number of samples, or equiva-
lently, the number of independent runs [13]. We monitored the
flatness of the histogram Hn(E ) by using the Kullback-Leibler
divergence test [21], and we found that the scaling in Eq. (8)
is sufficiently robust to produce flat histograms in a single step
when M0 $ N . The comparison shows that our algorithm is
precise and accurate, with a relative error on Cv of the order
10−3–10−2 for temperatures that are not too low. In Fig. 2 we
show the results for ISAW on a square lattice with lengths
N = 40, 41, 42, which, to our knowledge, are the longest
ISAW that have been numerated exactly to date [16,17]. Also
in this case the agreement with the exact enumeration results
is remarkable, although a larger sample size was necessary
(M0 = 3 × 105). A common critique that has been advanced
in the past against ensemble growth Monte Carlo methods is
that the memory requirements may be prohibitive in practical
applications. Nevertheless, our algorithm has the advantage to
be easily parallelizable for calculations across multiple nodes.
In particular, the parallelization scheme we implemented is
not limited by the per-node memory resources. For the N =
28 ISAW on a cubic lattice the whole calculation with M0 =
105 replicas per Message Passage Interface (MPI) rank takes
about 10 s to complete 10 independent runs with 8 MPI ranks
on an Intel(R) Xeon(R) E5-2680 2.4-GHz CPU node. We have
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FIG. 2. Normalized density of states (and specific heat, inset) of
an ISAW chain on a square lattice, for lengths N = 40, 41, 42. The
number of replicas is M0 = 3 × 105. The solid lines connect the exact
enumeration results from Refs. [16,17].

also found agreement between the specific heat curves of the
ISAW on a cubic lattice for N = 35, 36, 37 (see Fig. S1 in
the SM [20]) with those reported in Ref. [22]. For lengths up
to N = 200, the results are robust across different runs using
M0 = 8 × 108 replicas (see Fig. S2 in the SM [20]). We find
also remarkable agreement on the location of the peaks of
Cv (T ) and the ground-state degeneracy for the hydrophobic-
polar (HP) models in Refs. [1,12,23] (see Fig. S3 in SM [20]).
Finally, we show in Fig. 3 that our algorithm can be readily
extended to systems under confinement. A spherical cavity is
modeled as a spherical hard wall which effectively allows only
daughter chains that remain inside the cavity.

We conclude this Rapid Communication with a few com-
ments. Similarly to the canonical counterpart [13], the en-
semble growth method in the microcanonical ensemble is
nondynamical, and therefore is not affected by slowing-down
effects at phase transitions that are typical of dynamical Monte
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FIG. 3. Density of states of a N = 40 ISAW confined in a spheri-
cal three-dimensional cavity, as a function of the cavity radius R. The
curves are shifted to zero at their maximum value.

Carlo methods (such as for subefficient reptation algorithms
for collapsed polymer chains). It profits also from sampling
in the energy space, hence it is relatively insensitive to energy
barriers, and it does sample both low-energy and high-energy
configurations. Moreover, it shares similar advantages of anal-
ogous microcanonical sampling schemes [1,9]: From a single
simulation, one can determine the density of states gn(E )
for all chain lengths n = 1, . . . , N , which can be used to
compute any thermal average at any temperature. Finally, we
emphasize the generality of this method, which can be adapted
to generate statistical ensembles with a density of states that
is filtrated by parameters other than the energy.
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